Researchers develop novel vapor deposition technique based on continuous flash sublimation for rapid fabrication of all-inorganic perovskite solar cells

Researchers at NREL, BlueDot Photonics, University of Washington, Colorado School of Mines and Rochester Institute of Technology have developed a vapor deposition technique based on continuous flash sublimation (CFS) to fabricate all-inorganic perovskite thin films in under 5 minutes in a continuous process. The adoption of the proposed approach may also result in higher power conversion efficiencies of perovskite solar cell.

Schematic illustration of the continuous flash sublimation (CFS) approach consisting of a mechano-chemical synthesis of the source powder (here CsPb(IxBr1−x)3), the high-throughput deposition process in a home-made evaporation system, and a short post-annealing treatment to improve thin-film quality. Image from Journal of Materials Chemistry A

The team described the new technique as a non-batch process that solves two problems associated with the use of established vapor processing in perovskite material manufacturing – the slow speed of deposition and the non-continuous nature of batch processing.

Read the full story Posted: Apr 18,2024

Perovskites’ bright future in the MicroLED industry

Micro-LED (also known as mLED or µLED) is a display technology based on miniature LED devices that are used to directly create color pixels. Micro-LED displays are highly promising and have the potential to create efficient and great looking flexible displays, which could challenge even the most impressive high-end OLED displays. Micro LEDs are attracting significant attention as next-generation displays owing to their desirable characteristics such as low power consumption, high contrast ratio, high brightness, fast response speed, and long life span.

Samsung Electronics 89-inch microLED TV, 2023

Perovskite materials can benefit the MicroLED industry in two ways: as materials for color conversion (using perovskite-based QDs) and in perovskite-based LED emitters. Much R&D work is taking place on both these fronts, and interest seems to be growing.

Read the full story Posted: Apr 16,2024

Researchers develop strategy that yields 24.67%-efficiency doctor-bladed perovskite solar cells

Scalable deposition of high-efficiency perovskite solar cells (PSCs) is vital to achieving commercialization. However, a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition, which adversely affects the efficiency and stability of PSCs. Now, researchers at China's Central South University, Hunan Institute of Engineering and  Chinese Academy of Sciences (CAS) addressed this issue by incorporating 2-(N-morpholino)ethanesulfonic acid potassium salt (MESK) as the bridging layer between the tin oxide (SnO2) electron transport layer (ETL) and the perovskite film deposited via scalable two-step doctor blading. 

The scientists reported that both experiment and simulation results demonstrated that MESK can passivate the trap states of Sn suspension bonds, thereby enhancing the charge extraction and transport of the SnO2 ETL. 

Read the full story Posted: Apr 16,2024

Researchers design multifunctional display based on photo-responsive perovskite light-emitting diodes

Researchers at Linköping University, Nanjing University and NanjingTech have developed a multifunctional display that uses photo-responsive metal halide perovskite LEDs as pixels. The perovskite LED display can be simultaneously used as a touch screen, ambient light sensor and image sensor (including for fingerprint drawing) without integrating any additional sensors. The light-to-electricity conversion efficiency of the pixels also allow the display to act as a photovoltaic device that can charge the equipment.

Illustration of functions realized by the multifunctional display. Image from Nature Electronics

This is a step forward compared to current display screens, which are typically only used for information display, but can have a range of different sensors integrated into them for functions such as touch control, ambient light sensing and fingerprint sensing. According to the team, photo-responsive light-emitting diodes (LEDs), which can display information and respond to light excitation, could be used to develop future ultra-thin and large screen-to-body ratio screens. However, photo-response is difficult to achieve with conventional display technologies. 

Read the full story Posted: Apr 12,2024

Researchers provide a roadmap for the optical properties of perovskite/perovskite/silicon triple-junction cells

Researchers from the University of Freiburg and Fraunhofer ISE recently put together a roadmap for the optical properties of perovskite/perovskite/silicon triple-junction cells. They investigated the optical properties of perovskite/perovskite/silicon triple-junction cells and found these devices may have a practical efficiency potential of 44.3% assuming idealized electrical parameters. These cells may also potentially achieve a fill factor of 90.1%.

The group of researchers developed a comprehensive optoelectrical simulation model for triple-junction solar cells based on subcells relying on perovskite, perovskite, and crystalline silicon, respectively. The model aims to define an efficiency roadmap for improving the optical properties of these solar cells within realistic boundary conditions.

Read the full story Posted: Apr 11,2024

Researchers design efficient perovskite-perovskite tandem solar cell based on tin-lead top device

Researchers from China's Wuhan University and South China Normal University have developed a two-terminal (2T) monolithic all-perovskite tandem solar cell that uses a tin-lead (Sn-Pb) perovskite material for the top cell.

The team explained that mixed Sn-Pb perovskites have a narrow bandgap (NBG) of approximately 1.26 eV, which makes them ideal for efficient light harvesting and current-matching with wide bandgap (WBG) subcells in all-perovskite tandem cells.

Read the full story Posted: Apr 07,2024

Researchers develop self-polarized RGB device based on micro-LEDs and perovskite-in-polymer films for backlight applications

Researchers from China's Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Yang Ming Chiao Tung University and Hon Hai Research Institute have reported a self-polarizing RGB device utilizing semipolar micro-LEDs and perovskite-in-polymer films aimed at improving backlight applications.

Structure of an LCD based on semipolar blue μLEDs excite anisotropic perovskite NCs as backlight. Image from Opto-Electronic Advances

In backlighting systems for LCDs, conventional red, green, and blue (RGB) light sources that lack polarization properties can result in a significant optical loss of up to 50% when passing through a polarizer. To address this inefficiency and optimize energy utilization, the scientists developed a high-performance device designed for RGB polarized emissions. The device uses an array of semipolar blue µLEDs with inherent polarization capabilities, coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals. 

Read the full story Posted: Apr 05,2024

Researchers design efficient perovskite-CIGS tandem solar cell on conductive steel substrate

Researchers at the University of Sydney, Microsolar, University of New South Wales and MiaSolé Hi-Tech Corp. have reported a monolithic perovskite–CIGS tandem solar cell on a flexible conductive steel substrate with an efficiency of 18.1%, the highest for a flexible perovskite–CIGS tandem to date, representing an important step toward flexible perovskite-based tandem photovoltaics.

The advantage of the flexible and conductive steel substrate is that the steel itself can act as both a substrate and an electrode for either large-area-monolithic-panel or smaller-area-singular single-junction or multi-junction cell fabrication.

Read the full story Posted: Apr 04,2024

Energy America partners with German manufacturer to introduce perovskite solar cell technology to product line

Energy America, a leading solar module manufacturer based in the USA, has announced a new partnership with a German manufacturing and R&D station to incorporate perovskite solar cell (PSC) technology into their product line. This move is expected to significantly increase the power and efficiency of Energy America's solar cells, while also promoting sustainable energy solutions.

By partnering with a German manufacturer and R&D station, Energy America is taking a major step towards incorporating this cutting-edge technology into their product line. While the manufacturing and research for the PSCs will be done in Germany, Energy America has made it clear that all module design will be performed in America. This partnership not only benefits Energy America, but also strengthens the relationship between the USA and Germany in the renewable energy sector.

Read the full story Posted: Apr 03,2024

Researchers use multifunctional hole transporting material to realize efficient and stable perovskite solar cells

Researchers at China's Tsinghua University, Zurich University of Applied Sciences and University of Ferrara have developed a perovskite solar cell with a new hole transport material that promises enhanced efficiency and stability while also ensuring a scalable fabrication technique.

The team explained that the new organic hole-transporting material, named T2, offers a performance advantage over conventional materials like spiro-OMeTAD as its characteristics, including unique electronic, structural, and chemical properties, synergistically enhance the efficiency of hole extraction and significantly reduce charge recombination at the interface with the perovskite layer.

Read the full story Posted: Apr 02,2024