Korean team uses a transparent conductive adhesive to combine perovskite and silicon solar cells

Researchers from the Ulsan Institute of Science and Technology (UNIST) have demonstrated a new method of fabricating perovskite-on-silicon tandem devices, using a transparent conductive adhesive (TCA) to combine the two cells. The scientists have developed devices with demonstrated efficiencies of 19.4%, and propose methods to bring that up to over 24% using existing technology.

While the efficiency is still well below the 28% record for a perovskite/silicon tandem cell set by Oxford PV, the UNIST group says its method is far simpler to manufacture than previous concepts. “It is meaningful to develop an attached tandem solar cell unlike the conventional tandem solar cell with stacked structure,” said UNIST’s In Young Choi, lead author of the study. “We have observed that the TCA effectively connects the different light-absorbing layers.”

Researchers find environmental impacts on organometal halide perovskites

Researchers from the University of Tennessee and Oak Ridge National Laboratory have found that the environment is a non-trivial component in the operation of organometal halide perovskite (OMHP) devices, playing an important role in the charge transport behavior at the electrode/crystal interface of OMHPs due to coupling between surface mediated redox processes and bulk ionic species.

Environment factors impact transport and stability in OMHPs and but offer new opportunities in sensing and energy storage image

The team explored environmental and interface effects, namely transport behavior and origins of the gas sensitivity, in MAPbBr3 single crystal (SC) devices using impedance spectroscopy and G-Mode Kelvin Probe Force Microscopy (G-KPFM). Strong resistive response was found to occur when the crystals were exposed to different environments. It was shown, among other things, that SC response to the environment is extremely different at the surface as compared to the bulk due to the disorder surface chemistry.

Mixing perovskite nanoparticles with 2D perovskites may give a boost to the efficiency of blue LEDs

Researchers from Zhejiang University, the Beijing Institute of Technology and Nanjing Tech University in China, Argonne National Laboratory in the U.S, University of Cambridge in the UK have combined perovskite nanoparticles with 2D perovskites to double the efficiency of blue LEDs.

Perovskite particle mix to push forward blue LEDs imageBromide perovskite films consisting of nanoparticles embedded within 2-D perovskite layers produce blue LEDs with a record-high efficiency of 9.5%

While the device only glows for a few minutes, the work is still considered “a big step toward the development of high-performance blue perovskite emitters” says Jianjun Tian of the University of Science and Technology in Beijing, who was not involved in the work. “The efficiency of these blue perovskite LEDs is already higher than that of the commercially available blue organic LEDs.”

New approach to stabilize perovskite material may yield improved solar cells

An international research team, including scientists from Shanghai Jiao Tong University, the Ecole Polytechnique Fédérale de Lausanne (EPFL), and the Okinawa Institute of Science and Technology Graduate University (OIST), has found a stable that efficiently creates electricity and could be extremely beneficial for perovskite solar cells.

The researchers show how the material CsPbI3, an inorganic perovskite, has been stabilized in a new configuration capable of reaching high conversion efficiencies. This configuration is noteworthy as stabilizing these materials has historically been a challenge.

Research team advanced toward nontoxic perovskite solar cells

A team of scientists at Washington University in St. Louis has found what may be a more stable, less toxic semiconductor for solar applications using a novel double perovskite oxide, discovered through data analytics and quantum-mechanical calculations.

An atomic model of KBaTeBiO6 (left), scanning transmission electron micrograph showing the atomic structure of KBaTeBiO6, along with snapshot of the synthesized powder (right). Credit: WUSTLAn atomic model of KBaTeBiO6 (left), scanning transmission electron micrograph showing the atomic structure of KBaTeBiO6, along with snapshot of the synthesized powder (right). Credit: WUSTL

Rohan Mishra, assistant professor of mechanical engineering & materials science in the McKelvey School of Engineering, led an interdisciplinary, international team that discovered the new semiconductor, made up of potassium, barium, tellurium, bismuth and oxygen (KBaTeBiO6). The lead-free double perovskite oxide was one of an initial 30,000 potential bismuth-based oxides. Of those 30,000, only about 25 were known compounds.